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ABSTRACT

Summary: Cellerator is designed to simulate single and multi-cellular signal

transduction networks.  Interactions, specified by a compact, optionally palette-

driven, arrow based notation, are symbolically translated into differential

equations using a computer algebra system (Mathematica) that can be

subsequently solved numerically and/or output in a variety of formats  including

SBML, C, and FORTRAN.  Cellerator simulations can be run automatically or

with full user intervention and allow complete manual modification of chemical

and mathematical equations at all levels of simulation.

Availability: http://www-aig.jpl.nasa.gov/public/mls/

Contact: bshapiro@jpl.nasa.gov
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Cellerator is a Mathematica package designed to facilitate biological modeling via automated

equation generation.  Cellerator was designed with the intent of simulating at least the following

essential biological processes: (a) signal transduction networks (STNs); (b) cells that are

represented by interacting signal transduction networks; and (c) multi-cellular tissues that are

represented by interacting networks of cells that may themselves contain internal STNs.  These

processes combine to form an obvious hierarchy that can be further subdivided for notational

simplicity (e.g., STNs as elements of STNs, and so forth).

Signal transduction networks are specified using an arrow-based language (Shapiro, Levchenko

and Mjolsness, 2001) to represent interactions between various chemical species, up to and

including simplified representations of transcriptional regulation (Fig. 1).  The general input

canonical form is

{     ,   }rlist arrow rlist clist
catalyst

catalyst

where rlist is a list of reactants (e.g., A B C+ + );  arrow is one of the arrows in table 1 (e.g.,

  Æ,  ,  F a), catalyst is an optional species that catalyzes the reaction (such as an enzyme; the

upper and lower catalysts affect forward and reverse reactions, respectively);  and clist is an

optional list of comma-delimited rate constants (either symbolic names or values). Reactions can

also be specified by clicking on the appropriate buttons on a palette (Figure 1).  After being

collected the reactions are then symbolically translated into differential equations.  The

Cellerator implementation also allows explicit output description at each level so that “power-

users” can modify the equations at any stage desired.  Output is produced in a variety of formats:

as Mathematica ODEs, in C, FORTRAN, SBML (Hucka, 2001), MATHML, or HTML.  If

desired, the user can optionally solve the equations numerically. The present interface is a
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palette-driven Mathematica notebook; future enhancements include GUI, Java and web-based

interfaces.

Multicellular systems are represented by graphs containing a list of nodes, a list of links, and a

lineage tree.  Nodes represent cells; links represent intercellular interactions; and the lineage tree

records the familial history of cell birth. Cell division occurs  (optionally) whenever a specified

variable) passes a threshold. New cells are added to the graph when cells divide.

In additional to the various forms of direct transcriptional regulation illustrated in table 1, large

genetic regulatory networks can be represented by a generalization of the connectionist model

proposed previously (Mjolsness et. al. 1991).   Suppose that a cell contains n chemical species

whose concentrations are denoted by va , a n= 1 2, ,..., . Then the basic equation is

t l ta a a a a a a a Celleratorv g u h v v˙ ( ) ˙ ,= + - +

where ta , ha and  la  are constants, ˙ ,va Cellerator  is the sum of the terms generated from table 1,

and
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where Tab is a connection strength matrix  giving the effect of concentration vb  on concentration

va ; i  is an index that runs over all neighboring cells; Li  gives the geometric connectivity

between the current cell and neighboring cell i ; v̂b
i  is the concentration of species vb  in

neighboring cell i ; T̂ab is a connection strength matrix that gives the effect of v̂b
i  on va ;  vc is

the receptor concentration;  vb
i  is concentration of ligands excreted by neighbor i ;  ˜ ( )Tcb

2  is the

connection strength for excitation of receptor c due to ligand  b; ˜ ( )Tac
1  is the connection strength



JPL-MLTR-02-01 © 2002 Jet Propulsion Laboratory, California Institute of Technology

for production of protein a via receptor c activation; and . The g u( ) is a monotonic saturating

function such as g x x x( ) . ( / ( ) )/= + +0 5 1 12 1 2  (Reinitz et. al. 1995). 

Cell growth is represented by associating a “spring potential” with each link.  A gradient descent

towards local minimum is incorporated by adding equations of the form ẋi ijV= -—  where 

the potential function for the ith node is

V k c dij ij ij i j ijj
= - - -Â1

2
2[(| | ) ]x x m

where the sum is taken over all nodes j that are linked to node i, xi  are (vector) node locations,

kij  are interaction strengths, and dij  give the desired separation between the nodes.  The

potential gets “turned off” (set to zero) when the interaction distance becomes too large ( d dij >

for some constant d).

In the past it has been necessary to manually translate chemical networks from cartoon-diagrams

to chemical equations and thence to ordinary differential equations. This process is tedious and

highly error prone, and impractical for all but the simplest of systems because of the

combinatoric increase in the number of equations with the number of chemical species.

Cellerator provides a framework for generating, translating, and numerically solving a

potentially unlimited number of biochemical interactions.
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FIGURE CAPTION

Figure 1. Top: The Cellerator palette. Bottom: Typical notebook interface, using Cellerator to

simulate the repressilator (Elowitz and Leibler, 2000).
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Table 1.  Cellerator arrow notation.

Cellerator Arrow ODE Interpretation

  S PÆ ˙ ˙S P k= - = -

  A B C+ Æ ˙ ˙ ˙A B C kAB= = - = -

  A B Cn+ Æ ˙ ˙ ˙A B C kABn= = - = -

    A BF ˙ ˙A B k A k Bf r= - = - +

    A B C+ F ˙ ˙ ˙A B C k AB k Cf r= = - = - +
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